

Data Visualizations with Patient Queries for

Healthcare Providers

Berlin Somaraine Sankar

CIS4914, Senior Project

Department of CISE

University of Florida

Advisor: Dr. Peggy R. Borum, email: prb@ufl.edu

Department of FSHN

University of Florida, Gainesville, FL 32611

Date of Report: 29 November 2021

mailto:prb@ufl.edu

Abstract

The Borum Lab utilizes various databases, calculators, and other tools to treat patients

experiencing epileptic seizures using their Precision Ketogenic Therapy (PKT) program.

Of particular importance and relativity to this project is the creation of data visualization

outputs for healthcare providers with patient queries. Previously, graphical outputs for the

lab had to be manually created in Microsoft Excel; these graphs lacked interactive

features and automatic updating systems upon retrieval of new patient data, adding on to

the list of tasks that clinical lab members had to perform to procure up-to-date

visualizations. Upon reviewing the types of graphs that clinical lab members were

providing to external medical staff, the Healthcare Data Visualization project focused on

creating a web application in which interactive graphical outputs could be produced for

patient progress reports in an efficient, user-friendly manner. Some of these features

include date range sliders, graph type selections, dynamic graph creation, and an export

feature, among other tools.

As the Healthcare Data Visualization projects uses real patient data, ensuring all

databases and their associated information remained HIPAA compliant was of utmost

importance. To develop software for the Borum Lab, the team created our respective

projects on VirtualBox with a 64-bit Linux Ubuntu virtual machine. For Healthcare Data

Visualizations with patient queries, Streamlit and the Plotly API were used to develop

interactive and dynamic graph outputs, database snippets, and a complex query list. The

Streamlit application was made accessible from a Flask web page, which was also used

for clinical lab members to enter and audit patient data that writes to a relational

PostgreSQL database. The application was compressed into Docker images and deployed

onto a HIPAA compliant virtual machine hosted by ResVault, a UF Research Computing

software used to hold classified information. Upon deployment to ResVault, testing and

continued feature improvements were made by developers and with the guidance of the

Borum lab’s clinical members throughout our development sprints. Upon completion,

clinical and computer science lab members were trained to use the developed software to

create outputs for healthcare providers and to transfer ownership of the codebase for

further development. Software was distributed to Dr. Peggy R Borum and the Borum Lab

for continued use.

1. Introduction

The Borum Lab treats patients experiencing epileptic seizures by employing their

Precision Ketogenic Therapy program. Previously, the lab relied on Microsoft Excel

workbooks to contain their various patient records, calculators, and databases used for

PKT treatment. Transferring information between these Excel files had proven to be a

difficult process and with increasing necessitation of synchronous, remote work (further

bolstered by the Covid-19 pandemic) new software had to be created to procure data

visualizations for healthcare providers. Previous patient reports included graphs that were

not interactive and had to be individually created by lab members using data that had

been manually entered into an Excel database. Over time and continued change of lab

members, these databases had become cumbersome to navigate and riddled with

formatting errors that made generation of visualizations difficult, resulting in

postponement of graph creation for healthcare providers.

However, these visualizations are a vital tool for providing insight into the effects of

PKT on a patient. Healthcare providers hold particular interest in them as they allow

medical analysis to improve a patient’s treatment plan, highlighting data such as how a

patient is growing to how they may be experiencing seizures in relation to different

medication dosages or diet prescriptions. This is a large motivating factor for creating

data visualization software, as it allows for improved treatment of patients and provides

the opportunity to learn many data science engineering practices with real-world data.

The Healthcare Data Visualization project focuses on using Flask forms to write to a

PostgreSQL database that is accessible by Streamlit, where the graphs are created and

interacted with. A large portion of the project relies on the use of SQL queries to create

complex patient graphs in a way that is insightful to clinical staff in improving patient

care. Particularly this is achieved using features such as sliders, dynamic query graph

generation, and data entry error handling using Flask forms. My data visualization partner

is Paige Applegate who focuses on creating tools for our generated graphs, but with an

emphasis on features relevant to patients and their families.

The Gantt chart below (Figure 1) includes the research, planning, development, and

testing schedule of the healthcare visualization project. A note of importance is that

weekly meetings with Dr. Borum and clinical consultants from the lab were held so that

we could perform beta-testing of our developed features throughout the term, allowing us

to adjust our software to best fit the activities of the lab.

Figure 1. The Gantt chart that was used to schedule research, development, testing,

and deployment throughout the senior project course.

 Throughout each development sprint, software was updated to reflect requests from

our clinical consultants, allowing for continuous testing and improvement of our

software. Prior to deploying software for testing, a major expected challenge was

transferring data from Excel to the PostgreSQL database, followed by the ability to

integrate the newer Plotly graphs into Streamlit without negatively interfering with the

preexisting codebase. Throughout our testing, we were also able to remedy database and

visualization errors as they occurred, such as date ranges corrupting graphing tools or the

ability to export graphs from the virtual machine to a backed up virtual hard drive.

2. Problem Domain

The Borum Lab intends to improve and tailor PKT treatment of their patients by

increasing accessibility and efficiency of their databases, calculators, and other tools. A

relational database in which the lab’s calculators and patient records could be accessed

and used to create visualizations in an interactive manner did not previously exist in the

lab. To meet this demand and in the hopes of personalizing treatment plans for PKT

patients, the proposed Healthcare Data Visualization software has successfully been able

to generate graphs using medical data in a manner that is both HIPAA compliant and

intuitive for users. Upon completion and final deployment, this software will enable

healthcare professionals to better analyze a patient’s performance through a variety of

different features that allow treatment adjustments to be made to improve their quality of

life. Further features can be added onto this codebase, as well as additional databases, to

improve upon this application from both a user and data science perspective, as well as to

assist in pursuit of research questions conducted by the lab in the future.

3. Literature Overview

The Healthcare Data Visualization software is intended to work alongside numerous

other projects that were previously created for the Borum Lab, as well as to lay a solid

foundation for further development to be built upon. Webpages were created using the

Flask framework, which supports HTML/CSS code and is widely used throughout the

industry to integrate data entry forms into applications [4]. Our team found Flask to be

the most intuitive choice as it is easily packageable into a Docker container and can be

deployed onto an air-gapped virtual machine [1, 4]. There are many different interactive

graph libraries such as Dygraphs [6], but the existing PostgreSQL database was hosted

alongside a Streamlit container, so we opted to use frameworks and APIs that could

integrate with Streamlit [1, 3]. Streamlit also had an obvious lack of interactive features

that were requested for the software, so we turned to other libraries. We also found Plotly

to be widely supported by many other software frameworks and libraries, providing more

options to future developers [5]. The Plotly API also utilized Python, which meant that

the entirety of the data visualization code would continue to be Python.

One of the main concerns when creating the lab’s software was transferring

everything over to a reliable and robust system that would easily replicate the spreadsheet

databases that are currently in use. As the previous databases used by the lab were hosted

on Microsoft Excel, it made the most sense to transfer everything over to PostgreSQL

database, as this was also the method supported by the ResVault virtual machine. As the

ResVault VM is air gapped, PostgreSQL and pgadmin4 were the best fits for the data that

the lab would be interacting with for this and future projects. To construct the relational

database across multiple Flask applications, we found that PostgreSQL was also easily

integrated alongside the existing Flask container. As for Streamlit integration alongside

PostgreSQL, it made the analysis of patient data a lot less laborious as the queries easily

filtered out patient data via their medical record number instead of the usual process

clinical members took of navigating through numerous files on Microsoft Teams and its

file system. Another major hurdle was that comparisons of different patient data values

was an intensive manual process, especially if values to be compared were on different

files when the Excel database was in use. Streamlit and PostgreSQL provided a solution

to this issue as we were able to code a method in which only values selected across all

databases could be present for its relevant parent category.

4. Solution: Technical Approach

Given that our software would be tested using patient data, our team first had to

devise a way in which we could develop our individual projects locally and then transfer

it to ResVault in a manner that would not interfere with any of the preexisting software.

To achieve this, we utilized VirtualBox to create a local virtual machine in which we

could decompress Docker images and run the previous codebase with their respective

containers. Using this method, we were able to add our own web pages, database schema,

data input forms, and additional containers as necessitated by our project in a way that

would be deployable to ResVault. As the Healthcare Data Visualization worked

alongside other tables within the PKT relational database, the first technical objective our

team sought to achieve was implementing our database in a way that could pull relevant

information from previous and soon-to-be-added tables. The tables that are most relevant

to the Healthcare Data Visualization portion of the project can be seen in Figure 2.

Figure 2. A snippet of the tables most relevant to the Healthcare Data Visualization

portion of the project.

The software created in this project is intended to serve healthcare providers and

other clinical personnel, so creating user-friendly and intuitive webpages were essential

to the success of this project. Clinical lab members will be entering in patient data, so it

was important to make clear the sequence of actions that a lab member would take to

write data to the database through Flask web forms and then navigate to the Healthcare

Data Visualization portion of the application. Especially since this project coexists

alongside many other calculators and PKT tools, creating individualized portals was key

to ensuring successful navigation to and use of the visualization software.

Additionally, as we had routine meetings with our clinical consultants, we were able

to get user feedback on our wireframe designs. This allowed our team to develop the

Streamlit webpage in a manner that was easy to navigate and provided numerous options

for clinical members to generate their graphs. This process assisted in decisions

concerning which data visualization tools should be included as baseline features upon

first landing on the webpage and which features should be navigated to by other means.

The wireframes reflect this feedback, as there is a base graph that contains all interactive

analysis, slider, and export features, with additional buttons to navigate towards dynamic

graph creation or altering graph type functions. These designs translated over to the

actual webpage, as shown in this figure, and our testing has proven this to be useful

adjustments for clinical use.

Figure 3. The proposed

wireframe design for

Healthcare Data

Visualization, including

all features requested by

the lab.

Since Streamlit did not have interactive analysis tools that would meet the

requirements of the software requested by the lab, our team used the Plotly API to assist

in the development of these features. Plotly was largely used to make analysis of graphs

easier by creation of interactive tools, and Streamlit was used to create complex patient

queries to be displayed by the Plotly graphs. Each graph generated on the Healthcare

Data Visualization homepage includes a snippet of the relevant PostgreSQL database for

the patient that is selected, as well as the relevant values that have been graphed.

Healthcare Data Visualization features of particular interest were sliders to pinpoint

certain intervals of time for analysis, the integration of different types of graphs that are

generated by complex SQL queries, and the ability to create dynamic axis graphs in

which each axis value could be assigned values from in a dropdown. The primary

features designed for Healthcare Data Visualizations include:

• Base Visualizations: Date vs Y-axis, Bar graphs, z-score queries, export tool

• Analysis Tools: Date range sliders/pinch-to-zoom, guardrails, interpolation

• Advanced Visualizations: Dynamic axis selection, multiple variable selection

The visualization tools were developed and tested with dummy data, including extreme

and erroneous values to test edge cases of the graph generation and additional features.

Upon deploying the application to ResVault, patient data was ported into the application,

and further analysis tools and advanced visualization features were created to assist in

clinical analysis. Due to a recent major update to PostgreSQL, the version used by our

application was standardized to maintain functionality of the previous code.

5. Results

The Healthcare Data Visualization software was successful in generating graphs for

clinical use and performing analysis on patient performance on PKT. All proposed

features, including dynamic graph visualization and requested time analysis tools were

successfully implemented for the visualization portion of the project. Accompanying

webpages, data entry forms, and database structure was created to improve graphing of

queries and ensuring that accurate and correct data was written to the database. Given

that patient data is sometimes not accurately recorded or available for lab members to use

using the previous Excel database, Plotly’s interpolation tool was used to visualize an

estimate of patient values between collected datapoints.

All development, testing, and debugging with test data was conducted on a Linux

Ubuntu 64-bit operating system via VirtualBox version 6.1.30 with a virtual hard disk of

15.0 GB and 4000 MB system base memory. Flask version 2.0.0, Streamlit version 1.1.0,

PostgreSQL version 13.1-3, and Docker version 4.0.1 were used in this project. The

application is deployed on ResVault version 1.15.6 by a RedHat Enterprise Linux 7.7

with PostgreSQL (Large) air gapped virtual machine with a resting base network-in speed

of 10.27 KB/s, network-out speed of 15.71 KB/s, and 64MB of RAM. Accompanying

user drives and data drives at 500 GB each are used to store patient data and host a VM

for each user of the virtual machine.

6. Standards and Constraints

Standards: All programming was done in HTML5, CSS 2.1, and Python 3.9.2.

Constraints: All software was required to run on a RedHat Enterprise Linux 7.7 with

PostgreSQL (Large) air gapped virtual machine.

Figure 4. An

example graph

generated by

Streamlit,

showcasing a

patient’s growth

over time.

Acknowledgements

I would like to thank my advisor, Dr. Peggy R. Borum, for her continued guidance

and advice that extends far beyond the completion of my time in the lab. Additional

thanks go to the clinical and computer science lab members I have had the pleasure of

working with throughout this past year, their insight and expertise was invaluable

throughout this process. I would also like to thank my family for their support and belief

in my work, I am continuously inspired by their demonstration of the importance of

serving others.

References

[1] “Build your python image,” Docker Documentation, 26-Nov-2021. [Online].

Available: https://docs.docker.com/language/python/build-images/. [Accessed:

29-Nov-2021].

[2] “Plotly python graphing library,” Plotly. [Online]. Available:

https://plotly.com/python. [Accessed: 30-Nov-2021].

[3] “API reference - streamlit docs,” API Reference - Streamlit Docs. [Online].

Available: https://docs.streamlit.io/library/api-reference. [Accessed: 30-Nov-

2021].

[4] “Welcome to flask,” Welcome to Flask - Flask Documentation (1.1.x). [Online].

Available: https://flask.palletsprojects.com/en/1.1.x/. [Accessed: 30-Nov-2021].

[5] “PostgreSQL 13.5 documentation,” PostgreSQL Documentation, 12-Aug-2021.

[Online]. Available: https://www.postgresql.org/docs/13/index.html. [Accessed:

30-Nov-2021].

[6] “Class Dygraph,” Dygraph. [Online]. Available:

https://dygraphs.com/jsdoc/symbols/Dygraph.html. [Accessed: 30-Nov-2021].

Biography

Berlin Somaraine Sankar was born in Pembroke Pines, Florida on March 8, 1999 to

immigrant parents from Trinidad and Tobago. She completed her secondary education at

Miramar High School and College Academy at BC, where she earned an Associate in

Arts degree alongside her high school diploma. Currently, Ms. Sankar is completing her

baccalaureate degree in Computer Science with a minor in Business Administration at

University of Florida in Gainesville, Florida, where she expects to graduate on December

17, 2021. Ms. Sankar has always had an affinity towards biomedical sciences and

technology. Deciding to hone her software engineering skills to improve the healthcare

industry, she has become a developer proficient in Python, C/C++, Java, and SQL, with

experience in data science and analytics. She has worked with the University of Florida’s

Borum Lab throughout 2021, creating software to assist with patient treatment,

maintaining a HIPAA compliant virtual machine to host the lab’s software, and training

both computer science and clinical lab members to use these new applications. In her free

time, Ms. Sankar enjoys fishing with her family, learning about her Indo-Caribbean roots,

and exploring different artistic avenues (her current interests lie in crochet and painting).

She hopes to continue to use her skills to improve medical technologies and patient care

systems, with the goal of improving accessibility to marginalized and underrepresented

communities.

